Inferences on Compound Rayleigh Parameters with Progressively Type-II Censored Samples

نویسنده

  • Abdullah Y. Al-Hossain
چکیده

This paper considers inference under progressive type II censoring with a compound Rayleigh failure time distribution. The maximum likelihood (ML), and Bayes methods are used for estimating the unknown parameters as well as some lifetime parameters, namely reliability and hazard functions. We obtained Bayes estimators using the conjugate priors for two shape and scale parameters. When the two parameters are unknown, the closed-form expressions of the Bayes estimators cannot be obtained. We use Lindley.s approximation to compute the Bayes estimates. Another Bayes estimator has been obtained based on continuous-discrete joint prior for the unknown parameters. An example with the real data is discussed to illustrate the proposed method. Finally, we made comparisons between these estimators and the maximum likelihood estimators using a Monte Carlo simulation study. Keywords—Progressive type II censoring; Compound Rayleigh failure time distribution; Maximum likelihood estimation; Bayes estimation; Lindley's approximation method; Monte Carlo simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for a Skew Normal Distribution Based on Progressively Type-II Censored Samples

In many industrial experiments involving lifetimes of machines or units, experiments have to be terminated early or the number of experiments must be limited due to a variety of circumstances (e.g. when expensive, etc.) the samples that arise from such experiments are called censored data. Cohen (1991) was one of the earliest to study a more general censoring scheme called progressive censor...

متن کامل

Inference for the Proportional Hazards Family under Progressive Type-II Censoring

In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...

متن کامل

Improved Estimation in Rayleigh type-II Censored Data under a Bounded Loss Utilizing a Point Guess Value

‎The problem of shrinkage testimation (test-estimation) for the Rayleigh scale‎ ‎parameter θ based on censored samples under the reflected‎ ‎gamma loss function is considered‎. We obtain the minimum risk‎ ‎estimator among a subclass and compute its risk‎. ‎A shrinkage‎ ‎testimator based on acceptance or rejection of a null hypothesis&lr...

متن کامل

On properties of dependent general progressively type-II censored order statistics

In the literature of life-testing, general progressive censoring has been studied extensively. But, all the results have been developed under the key assumption that the units undertest are independently distributed. In this paper, we study general progressively Type-II censored order statistics arising from identical units under test which are jointly distributed according to an Archimedean co...

متن کامل

Bayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models

Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013